Phys.Web.Ru
>>

В объятиях Солнца

Кандидат физико-математических наук А. Петрукович и
доктор физико-математических наук Л. Зеленый
(Институт космических исследований.)
Опубликовано в журнале "Наука и жизнь", N 7, 2001 г.

Солнце

Поток энергии Солнца, питаемый термоядерной реакцией в его центре, к счастью, исключительно стабилен, не в пример большинству других звезд. Большая его часть в конце концов испускается тонким поверхностным слоем Солнца - фотосферой - в виде электромагнитных волн видимого и инфракрасного диапазона. Солнечная постоянная (величина потока солнечной энергии на орбите Земли) равна 1370 Вт/м2. Можно представить, что на каждый квадратный метр поверхности Земли приходится мощность одного электрического чайника. Всего Солнце тогда можно заменить чуть более чем 1014 чайниками. Над фотосферой расположена корона Солнца - зона, видимая с Земли только во время солнечных затмений и заполненная разреженной и горячей плазмой с температурой в миллионы градусов. Это самая нестабильная оболочка Солнца, в которой зарождаются основные проявления солнечной активности, влияющие на Землю. Косматый вид короны Солнца демонстрирует структуру его магнитного поля - светящиеся сгустки плазмы вытянуты вдоль силовых линий. Горячая плазма, истекающая из короны, формирует солнечный ветер - поток ионов (состоящий на 96% из ядер водорода - протонов и на 4% из ядер гелия - альфа-частиц) и электронов, разгоняющийся в межпланетное пространство со скоростью 400-800 км/с. Солнечный ветер растягивает и уносит с собой солнечное магнитное поле. Это происходит потому, что энергия направленного движения плазмы во внешней короне больше, чем энергия магнитного поля, и принцип вмороженности увлекает поле за плазмой. Комбинация такого радиального истечения с вращением Солнца (а магнитное поле "прикреплено" и к его поверхности) приводит к образованию спиральной структуры межпланетного магнитного поля - так называемой спирали Паркера. Солнечный ветер и магнитное поле заполняют всю Солнечную систему, и, таким образом, Земля и все другие планеты фактически находятся в короне Солнца,испытывая воздействие не только электромагнитного излучения, но еще и солнечного ветра и солнечного магнитного поля. Интересно, что впервые о существовании солнечного ветра догадались еще до наступления космической эры при изучении комет. Если бы на кометы действовало только световое давление Солнца, то их хвосты были бы направлены точно от Солнца. Американский ученый Людвиг Бирман в 1951 году обнаружил, что хвосты комет отклонены в среднем на 4 градуса от этого направления. Такое отклонение можно объяснить только наличием потока ионов и электронов - "ветра", "дующего" от Солнца со скоростью около 400 км/с. Позднее данные, полученные первыми советскими космическими аппаратами "Луна" в 1959 году, позволили сотруднику Института космических исследований К. И. Грингаузу с коллегами впервые экспериментально обнаружить солнечный ветер. Таково вкратце современное представление о стабильном Солнце. Сообщения о солнечных пятнах, заметных в виде помутнений на фотосфере, стали, вероятно, первыми историческими свидетельствами солнечной изменчивости. Несмотря на то, что случаи наблюдения отдельных больших пятен известны с античных времен, их "официальное" открытие датируется 1611 годом, когда изобретение телескопа позволило начать постоянные исследования. В середине XIX века немецкий ученый Рудольф Вольф, собрав практически все известные упоминания о пятнах, обнаружил примерно 11-летнюю периодичность их появления (сами пятна могут существовать по несколько месяцев). С тех пор количество пятен, посчитанное по особой формуле, - число Вольфа - служит основной характеристикой солнечной активности. В годы спокойного Солнца - в солнечный минимум - пятен практически нет, а во время максимума солнечной активности число пятен может достигать нескольких десятков. На графике хорошо видно, что число Вольфа в период наивысшей активности Солнца (1991 г.) почти в 20 раз больше, чем во время его спокойного состояния (1995 г.).

Чтобы понять причины солнечной активности, нам придется познакомиться поближе с магнитным полем Солнца. В период минимума активности конфигурация солнечного магнитного поля близка к дипольной и похожа на форму магнитного поля Земли. При приближении к максимуму активности структура магнитного поля по не вполне понятным причинам усложняется. Одна из наиболее красивых гипотез гласит, что при вращении Солнца магнитное поле как бы навивается на него, постепенно погружаясь под фотосферу. Со временем, в течение как раз солнечного цикла, магнитный поток, накопленный под поверхностью, становится таким большим, что жгуты силовых линий начинают выталкиваться наружу. Места выхода силовых линий образуют пятна на фотосфере и магнитные петли в короне, видимые как области повышенного свечения плазмы на рентгеновских изображениях Солнца. Величина поля внутри солнечных пятен достигает 0,01 тесла, в сто раз больше, чем поле спокойного Солнца. Магнитные петли в короне и пятна на фотосфере Солнца (рентгеновский снимок сделан американо-японским космическим аппаратом Yohkoh) и схема их образования..

Снимки Солнца в рентгеновских лучах от максимума солнечной активности (1990 г., слева) до ее минимума (1995 г., справа), сделанные космическим аппаратом Yohkoh.

Интуитивно энергию магнитного поля можно связать с длиной и количеством силовых линий: их тем больше, чем выше энергия. При подходе к солнечному максимуму накопленная в поле огромная энергия начинает периодически взрывным образом высвобождаться, расходуясь на ускорение и разогрев частиц солнечной короны. Резкие интенсивные всплески коротковолнового электромагнитного излучения Солнца, сопровождающие этот процесс, носят название солнечных вспышек. На поверхности Земли вспышки регистрируются в видимом диапазоне как небольшие увеличения яркости отдельных участков солнечной поверхности. Однако уже первые измерения, выполненные на борту космических аппаратов, показали, что наиболее заметным эффектом вспышек оказывается значительное (до сотен раз) увеличение потока солнечного рентгеновского излучения и энергичных заряженных частиц - солнечных космических лучей. Во время некоторых вспышек происходят также выбросы значительного количества плазмы и магнитного поля в солнечный ветер - так называемых магнитных облаков, которые начинают быстро расширяться в межпланетное пространство, сохраняя форму магнитной петли с концами, опирающимися на Солнце. Плотность плазмы и величина магнитного поля внутри облака в десятки раз превосходят типичные для спокойного времени значения этих параметров в солнечном ветре. Выброс плазменной массы - будущего магнитного облака - из короны Солнца. Снимок в рентгеновских лучах с космического аппарата SOHO, запущенного Европейским космическим агентством совместно с NASA.

Несмотря на то, что во время крупной вспышки может выделиться до 1025 джоулей энергии (поистине астрономическая величина), общее увеличение потока энергии в солнечный максимум невелико и составляет всего 0,1-0,2%. Можно сказать, что солнечная активность - это всего лишь гримаса на чистом и спокойном солнечном диске, обогревающем Землю. Но так же как выражение лица человека может иногда ранить больнее, чем какое-либо его действие, так и межпланетное пространство и окрестности Земли очень чувствительны к всплескам солнечной активности и их проявлениям в межпланетном пространстве - солнечным космическим лучам, магнитным облакам, коротковолновому электромагнит ному излучению. Посмотрим, что Земля может противопоставить в свою защиту.

 Phys.Web.Ru - сервер Физического факультета Московского государственного университета им. М.В. Ломоносова.
 Проект осуществляется при поддержке проекта Научная сеть