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a b s t r a c t

It is shown that ionosphere heating by DC electric field leads to instability of acoustic-gravity waves and

to the formation of solitary internal gravity vortex structures. These dipole type vortices with

characteristic transverse size of the order of several kilometers are propagated in the lower ionosphere

with subsonic velocity. The threshold values of the electric field needed to suppress the wave damping

caused by the interaction of induced current with the geomagnetic field and to provide the vortex

generation are found. The considered physical mechanism is applicable to the generation of internal

gravity vortices and related ionospheric disturbances when the ionosphere is influenced by the electric

field of seismic origin exceeding the threshold value.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous publications indicate the growing interest in
acoustic-gravity waves (AGW) in the ionosphere due to a role
these waves can play in the dynamics of ionospheric plasma and
their possible applications for explanation of some disturbances
produced in the ionosphere by thunderstorms, earthquakes,
volcano eruptions, typhoons, etc. (Hines, 1968; Hooke, 1968;
Hines and Hooke, 1970; Rottger, 1981; Kim and Mahrt, 1992;
Igarashi et al., 1994; Aburdzhaniya, 1996; Kaladze, 1998; Sorokin
et al., 1998, 2005a, b; Chmyrev et al., 1999; Sorokin and Chmyrev,
1999; Kanamori, 2004; Kaladze et al., 2007, 2008a, b). The
nonlinear acoustic-gravity wave propagation was methodically
investigated by Stenflo (1987, 1990, 1996), Stenflo and Stepany-
ants (1995), Kaladze and Tsamalashvili (1997) and Kaladze (1998)
who have considered the localized solutions in the form of dipolar
vortices. Other types of nonlinear AGW structures such as the
vortex chains, the tripolar and the axially symmetric monopole
vortices and the structures in the form of a row of counter-
rotating vortices were constructed by Stenflo (1994), Jovanovic
et al. (2001, 2002) and Pokhotelov et al. (2001). The most
significant results on the nonlinear acoustic-gravity waves are
summarized in the review paper by Stenflo and Shukla (2009).

The theory of dissipative instability of acoustic-gravity waves
has been proposed for interpretation of experimental satellite
data on the small scale plasma density and transverse magnetic
field variations in the ionosphere over a seismically active zone by

Sorokin et al. (1998), Chmyrev et al. (1999) and Sorokin and
Chmyrev (1999). A similar physical mechanism was suggested for
the formation of VLF ducts in seismically disturbed ionosphere
(Sorokin et al., 2000). The instability is driven by DC electric field,
which arises in the ionosphere during the enhancement of seismic
activity (Chmyrev et al., 1989; Gusheva et al., 2008, 2009). The
theory of this seismic induced DC electric field in the ionosphere
is presented in Sorokin et al. (2001, 2005a, b, 2006).

Aburdzhaniya (1996) has considered the formation of AGW
vortices in the convectively unstable ionosphere (Brunt-Vaisala
frequency o2

g o0) and suggested the mechanism for the intensi-
fication of atomic oxygen emission (557.7 nm) due to enhance-
ment of neutral gas density within the vortex structure. The
applicability of the result to real ionosphere seems doubtful
because the case when altitudinal plasma temperature gradient
exceeds the gradient of plasma density is rather exotic and does
not correspond to existing ionosphere models.

Kaladze et al. (2008b) have derived the equations describing
the nonlinear solitary inertio-gravity vortices in stable stratified
(o2

g 40) ionosphere taking into account the interaction of
induced ionospheric current with the geomagnetic field. It was
shown that in the E- and F- layers of the ionosphere these waves
decay with the damping rate of the same order of magnitude as in
the linear case.

Our paper presents further generalization of the nonlinear
equations (Kaladze et al., 2008b) for the exponentially inhomo-
geneous ionosphere with finite magnitude DC electric field. As
shown below, the Joule heating by the electric field leads to
instability and to the formation of dipolar internal gravity vortices
in the upper E-layer and the F-layer. This process occurs when DC
electric field magnitude exceeds the threshold value defined by
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the damping rate in the absence of the electric field. Thus the
inclusion of DC electric field allows eliminating the damping
effect and the destruction of vortices launched into the iono-
sphere from the external sources and also provides the generation
of solitary vortex structures directly in the lower ionosphere.

2. Basic equations for internal-gravity waves

We consider the internal gravity wave (IGW) propagation in
quasi-neutral weakly ionized plasma of the lower ionosphere
consisting of electrons, ions and neutral particles immersed in
the geomagnetic field B and influenced by DC electric field E. The
basic idea of this consideration is to find a balance between the
wave damping caused by the interaction of induced current with
the geomagnetic field and the wave growth due to dissipative
IGW instability in external electric field. In linear approximation
this idea was verified by Sorokin et al. (1999, 2000) who have
found the threshold values of the electric field needed to suppress
the attenuation and to provide the wave growth.

To describe the properties of the nonlinear waves we use the
momentum equation, the equation of state and the generalized
Ohm’s law:
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where v, r and P are the mean-mass velocity characterizing the
motion of gas as a whole, its density and pressure, respectively, g
is the gravitational acceleration, c is the light speed, g¼cp/cv is a
ratio of the heat capacities at constant pressure and volume, EJ is
the geomagnetic field-aligned electric field, Q describes a source
of energy, which is the Joule heating ðjUEÞ in our case, sJ,sp and sh

are the parallel (field-aligned), Pedersen, and Hall conductivities,
respectively:
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where e is electron charge, N is electron number density,
ne¼nei+nen, where nei and nen are the effective collision frequen-
cies of electrons with ions and neutrals, nin is the collision
frequency of ions with neutrals, oe, oi are the cyclotron
frequencies of electrons and ions and m, M are electron and ion
masses. We assume E== ¼ 0 since s//4104sp in the F- and upper
E-layers of the ionosphere. Taking into account the fact that in
these regions ne5oe, nin5oi and (mve/Mvin)51 we can use the
simplified expressions for the conductivities as follows:

spCe2N
nin

Mo2
i

, shC
nin

oi

� �
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where nin ¼ qv�i Nn, v�i ¼ ð8RT=pÞ1=2, q is the cross-section of ion
scattering on molecules, Nn is the number density of molecules, T

is gas temperature, R¼cp�cv is the universal gas constant and v�i
is mean thermal velocity of ions. Thus the dependence of sp on
thermodynamical quantities can be presented as

sp ¼ mrirðTÞ
1=2; m¼ 8qc2=pMB2: ð4Þ

Let us introduce the right hand Cartesian coordinate system
(x, y, z) with the x-axis directed from the west to the east, the
y-axis from the south to the north, and the z-axis upward along
the local vertical. We assume that the magnetic field B is vertical
and downward and therefore the consideration is applicable to
high-latitude ionosphere of the northern hemisphere. DC electric
field E is directed along the x-axis. Let us consider the behavior of
small perturbations of the velocityv1, density r1 and pressure
P1 at the background of their stationary values v0, r0, P0 and
the stationary temperature T0 in the exponentially irregular
ionosphere:

r0 � P0 � expð�z=HÞ; H¼ RT0=g: ð5Þ

Ion density varies with altitude substantially slower than the
neutral atmosphere density r0 with the scale H; therefore it could
be assumed to be constant. The estimates made in Sorokin et al.
(1998, 1999) show that we can neglect the vertical velocity vz0

and assume the ionosphere to be at rest. In Eqs. (1)–(3)
j¼ j1 ¼ sp1Eþsp0ðv1�BÞ=c is the current density perturbation
connected with a perturbation of the ionosphere conductivity sp1.
Using Eq. (4), the equation of state and the equality ri/r0¼a(r1/
r0), one obtains (Sorokin et al., 1999)

sp1C ðsp0=2ÞP1=P0þ½ð2aþ1Þsp0=2�r1=r0 ð6Þ

Finally we make use of the assumption that the perturbations
of pressure are relatively small P1/P05r1/r0 and the medium is
incompressible (r � v¼ 0). Thus, we study the low-frequency
branch of AGW—the internal gravity wave (IGW) mode. Assum-
ing q/qy¼0 we consider two-dimensional plasma motion in the
(x, z) plane. With these assumptions one can introduce the stream
function c

v1x ¼�
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Using Eqs. (3), (6) and (7) Eqs. (1) and (2) yield
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where J(a,b)¼(qa/qx)(qb/qz)�(qa/qz)(qb/qx), r2c¼q2c/qx2+q2c/
qz2,
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and cs is a sound velocity. Taking into account distribution (5) we
introduce

r2 ¼r1 expðz=2HÞ, c1 ¼cexpð�z=2HÞ, r0 ¼rs expð�z=HÞ, rs ¼ Const: ð11Þ
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where om¼sp0B2/c2rs. The set of Eqs. (12) and (13) looks similar
to Eqs. (57) and (58) of Kaladze et al. (2008b). Substantial
difference is in a term o1r2 in the right side of Eq. (13), which
describes the Joule heating effect on the electrical conductivity
and provides the wave growth as shown below. When obtaining
Eqs.(12) and (13) we assumed that for the considered wave
disturbances q/qz441/H and therefore one could neglect the
nonlinear terms proportional to 1/H. Besides we used the equality
@P0=@zC�gr0 according to Eq. (1) in zero approximation since
vzo5(gH)1/2.

3. The dispersion relation and the energy dynamic low

In linear approximation, Eqs. (12) and (13) allow us to obtain
the dispersion equation for IGW. Assuming c1 � r2 �

expð�ioþ ikxxþ ikzzÞ one obtains

o¼ 1
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where og¼[g(g�1)/gH]1/2 is the Brunt-Vaisala frequency. For
o2

g*o1om Eq. (14) takes the following form:
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In the absence of DC electric field (o1¼0) Eq. (15) describes
the same dispersion relation and the damping rate for IGW as in
Kaladze et al. (2008b). An appearance of strong enough electric
field as seen from (15) suppresses the damping and provides the
wave growth when
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:

This inequality defines the threshold value Eth of the electric
field for the IGW instability as follows:
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To find the energy dynamic low for the considered waves let us
multiply Eq. (12) by �c1 and Eq. (13) by r2 and then integrate
these equations over x and z. As a result one obtains
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where W is the energy of the wave structure:
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Thus, we see from Eq. (17) that the wave energy decreases if
o1¼0 and increases at a sufficiently large value of o1 corre-
sponding to the over threshold electric field.

4. IGW vortex solution

We look for stationary solution of Eqs. (12) and (13) in the
reference frame moving with constant velocity u along
the x direction, which is dependent only on the coordinates
x¼x�ut and z. In this reference frame Eqs. (12) and (13) take the

following form:
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Let us look for the solution that satisfies the equation

r2c1þ
g
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Substituting qr2/qx from Eq. (19) in Eq. (18) and using (20) we
obtain
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where k2 ¼o2
g=u2,k1 ¼o1=u and km¼om/u. Let us consider first

the event of relatively small attenuation (km5k1) as follows:
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Multiplying this equation by expð�ptÞ and integrating over x
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R1ðx¼ 0,zÞ ¼r2c1ðx¼ 0,zÞþ k2�
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where p is the Laplace variable. The simplest partial solution of
the inhomogeneous equation (22) is c1¼p�1a1z(k2

�1/4H2)�1,
which yields the Laplace inversion
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Let us rewrite the homogeneous equation (22) in the polar
coordinates r ¼ ðx2

þz2Þ
1=2,y¼ arctanx=z:
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The solution of this equation at k241/4H2 is

c1ðr,yÞ ¼ aðpÞcosyJ1 r k2�
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where J1(ar) is the Bessel function of first order and a(p) is the
arbitrary function of p. To provide c1-0 at p-N we assume
a(p)¼a0/p(a0¼Const). Let us consider the behavior of this solution
at small x:

lim
x-0

c1ðxÞ ¼ lim
p-1

pc1ðpÞ:

Expansion of the Bessel function in Eq. (25) in series on small
d¼k1/p and the Laplace inversion of two first terms of the
expansion transform solution (25) into the following form:

c1ðx,zÞCa0 cos y J1ðbrÞþ
k1

2
brJ

0

1ðbrÞ

Z x
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where b¼(k2
�1/4H2)1/2, J

0

1ðbrÞ is a derivative of J1(br) and I0 is
the modified Bessel function of the first kind.
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To find the solution at large x let us return to Eq. (24) at p-0.
In this case we obtain

lim
x-1

c1 ¼ b cosyK1 br

ffiffiffiffiffiffi
p

k1

r� �
,

where K1 is the modified Bessel function of the second kind and
b¼b(p) is the arbitrary function of p. For simplicity let us put
b(p)¼b0p�1/2 and b0¼Const. The Laplace inversion of the above
expression yields the solution at x-N:

c1ðx,zÞC
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p

b0 cosy
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b2r2
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 !
: ð27Þ

Combining Eq. (26) with solution (23) of the inhomogeneous
equation (22) we finally obtain the general solution for small x as
follows:
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Fig. 1 shows the plot of c1as a function of coordinates (x, z)
calculated with the help of Eq. (28). In the absence of DC electric
field (k1¼0) Eq. (28) has a classical form as follows:

c1 ¼ a0 cosyJ1ðbrÞþða1=bÞr cos y:

Thus we obtained the localized solitary dipolar vortex, which
has form (27) at large distances x-N and form (28) at small
x-0. Exact vortical solution in all ranges of 0oxoN could be
found from the Laplace inversion applied to Eq. (25).

5. Discussion

Electric field driven generation of solitary IGW dipolar vortical
structures can produce significant effects in the upper ionosphere.
Dual plasma density perturbations within the structures and
the corresponding alteration of electric conductivity induce the
polarization current and related electric field disturbances in the
upper E-layer. Because of high conductivity along the magnetic
field lines these disturbances are transferred to the high altitude
ionosphere and the magnetosphere by magnetic field-aligned
currents, which are closed in the E-layer due to Pedersen
conductivity. Since the field-aligned currents are carried by
electrons, while the transverse currents are carried by ions, the
upward propagation of the electric field disturbances is followed
by the local variations of plasma density and the formation of
plasma layers stretched along the geomagnetic field. Thus the
generation of IGW vortices in the upper E-layer can induce the
localized plasma density inhomogeneities and the geomagnetic
field-aligned currents in the high altitude ionosphere traveling
along the x (west–east) direction with constant velocity u, which
is several times lower than the sound velocity in the E-layer.

The characteristic transverse size of these structures in the upper
ionosphere corresponds to the vortex cross-section and is of the
order of several kilometers. This mechanism was first considered
in a frame of the linear theory of dissipative acoustic-gravity wave
instability by Sorokin et al. (1998) and was applied to interpreta-
tion of some experimental data on the seismic related ionospheric
disturbances by Chmyrev et al. (1999), Sorokin and Chmyrev
(1999) and Sorokin et al. (2000). The nonlinear localized IGW
solutions obtained in the present paper can be used for further
development of the theory of seismic impact on the ionosphere.

Critical point of consideration in both the linear and nonlinear
approaches is the magnitude of DC electric field needed for wave
excitation. We already found the threshold value of the electric
field required to suppress the wave damping caused by the
interaction of induced current with the geomagnetic field and to
provide the vortex generation. Let us estimate this value for the
high-latitude ionosphere. Assuming g¼1.4, a¼2, B¼5�104 nT
and cs¼300 m/s we obtain from Eq. (16) EthC15 mV/m. This is a
rather common value for the auroral ionosphere.

Besides the electric field there are some other sources of
influencing the ionosphere, which could produce similar effect on
IGW generation. Among them are large amplitude electromag-
netic waves radiated by the ground-based HF and VLF transmit-
ters. The long-term operation of these ‘‘heaters’’ can lead to
excitation of IGW and the formation of solitary dipolar vortex
structures in the ionosphere over the heating facilities. As asso-
ciated effect one can expect the generation of localized plasma
density inhomogeneities stretched along the geomagnetic field
lines, which work as the VLF ducts.

6. Conclusion

In this paper we have investigated the influence of DC electric
field on nonlinear internal gravity wave propagation in the stable
stratified ionosphere. The nonlinear governing equations are
deduced, which take into account both the wave decay caused
by the interaction of the induced ionospheric current with the
geomagnetic field and the wave growth due to dissipative IGW
instability in the electric field. It is shown that the Joule heating
by the electric field leads to the formation of solitary dipolar
internal gravity vortices in the upper E- and F-layers. This process
occurs when DC electric field magnitude exceeds the threshold
value defined by the damping rate in the absence of the electric
field. An estimate made for the auroral ionosphere gives the value
EthC15 mV=m. Thus the inclusion of DC electric field allows one
to eliminate the damping effect and the destruction of vortices
launched into the ionosphere from the external sources and
provides the generation of solitary vortex structures directly in
the ionosphere.
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Fig. 1. The spatial distribution of c1(x, z) function at various values of o1. The following parameters have been selected: u¼50 m/s; H¼104 m; a1¼0 .
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